
A SHORT NOTE ON CONVEX FUNCTIONS

STEVE FAN

Abstract. This short note concerns three well-known inequalities for convex functions and
their interesting proofs and applications I discovered back when I was an undergrad.

In [1] Alzera gave a simple and elegant proof of the classical arithmetic mean-geometric
mean inequality [2, Theorem 9]:

n∏
i=1

apii ≤
n∑
i=1

piai,

where a1, ..., an and p1, ..., pn are positive real numbers with
∑n

i=1 pi = 1. We now show that
his method can be used to prove Jensen’s inequality for convex functions [2, Theorem 90].
Recall a function f : [a, b]→ R is said to be convex if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

for any x, y ∈ [a, b] and any λ ∈ [0, 1]. Moreover, f is called strictly convex if it is convex and

f(λx+ (1− λ)y) = λf(x) + (1− λ)f(y)

implies x = y or λ ∈ {0, 1}. Now we prove the following result.

Proposition 1. Let f : [a, b]→ R be a differentiable convex function. Then

f

(
n∑
i=1

pixi

)
≤

n∑
i=1

pif(xi) (1)

for all real numbers x1, ..., xn ∈ [a, b] and positive real numbers p1, ..., pn with
∑n

i=1 pi = 1.
Moreover, if f is strictly convex on [a, b], then equality in (1) holds if and only if x1 = ... = xn.

Proof. Without loss of generality, assume x1 ≤ ... ≤ xn. Let A :=
∑n

i=1 pixi. Since f
is differentiable and convex, it is continuously differentiable. Suppose |f ′(x)| < M for all
x ∈ [a, b]. Let g(x) := f(x) + Mx for x ∈ [a, b]. Then g is convex on [a, b] and g′(x) =
f ′(x) +M > 0 for all x ∈ [a, b]. This implies that g is strictly increasing on [a, b]. Observe

g(x1) ≤
n∑
i=1

pig(xi) ≤ g(xn).

Thus there exists a unique B ∈ [x1, xn] for which

g(B) =
n∑
i=1

pig(xi).

1
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Furthermore, there exists 1 ≤ k < n for which xk ≤ B ≤ xk+1. Since g is convex on [a, b],
we have that g′ is increasing on [a, b]. It follows that

k∑
i=1

pi

∫ B

xi

(g′(B)− g′(x)) dx+
n∑

i=k+1

pi

∫ xi

B

(g′(x)− g′(B)) dx ≥ 0. (2)

The left-hand side is
n∑
i=1

pi

∫ B

xi

g′(B) dx−
n∑
i=1

pi

∫ B

xi

g′(x) dx = (B − A)g′(B).

Since g′(B) > 0, we have A ≤ B. This is equivalent to g(A) ≤ g(B). But note that
g(A) = f(A) +MA and

g(B) =
n∑
i=1

pig(xi) =
n∑
i=1

pif(xi) +MA.

This gives (1).
Suppose further that f is strictly convex on [a, b]. Then g is also strictly convex on [a, b].

Thus g′ is strictly increasing on [a, b]. If equality in (1) holds, then A = B. This implies that
equality in (2) holds, and hence we must have xi = B for all 1 ≤ i ≤ n. Thus x1 = ... = xn.
This completes the proof. �

By a similar but slightly complicated argument we can prove the following result which
generalizes an inequality of Szegö [4] when the convex function considered is differentiable.

Proposition 2. Let f : [0, a] → R be a differentiable convex function. Let n ≥ 1 be an
odd integer and let x1, ..., xn ∈ [0, a] be real numbers with x1 ≥ ... ≥ xn. Suppose that
p1, ..., pn ∈ [0, 1] are non-negative real numbers such that p1 ≥ ... ≥ pn. Then

f

(
n∑
i=1

(−1)i−1pixi

)
≤

n∑
i=1

(−1)i−1pif(xi) + λf(0), (3)

where

λ = 1−
n∑
i=1

(−1)i−1pi.

Proof. Let yi := xi for all 1 ≤ i ≤ n and yn+1 := 0. Put pn+1 := −λ. Then we have

n+1∑
i=1

(−1)i−1pi = 1 (4)

and
n+1∑
i=1

(−1)i−1piyi =
n∑
i=1

(−1)i−1pixi. (5)

Without loss of generality, we may suppose that f ′(x) > 0 for all x ∈ [0, a]. Let A :=∑n
i=1(−1)i−1pixi. Since x1 ≥ ... ≥ xn ≥ 0 and 1 ≥ p1 ≥ ... ≥ pn ≥ 0, we see that

0 ≤ pnxn ≤ A ≤ p1x1 ≤ x1.
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Since f is increasing on [0, a], we have

n∑
i=1

(−1)i−1pi(f(xi)− f(0)) ≤ p1(f(x1)− f(0)) ≤ f(x1)− f(0).

It follows that

n∑
i=1

(−1)i−1pif(xi) + λf(0) =
n∑
i=1

(−1)i−1pi(f(xi)− f(0)) + f(0) ≤ f(x1).

By partial summation we have

n∑
i=1

(−1)i−1pif(xi) =
n−1∑
i=1

i∑
j=1

(−1)j−1pj(f(xi)− f(xi+1)) + (1− λ)f(xn) ≥ (1− λ)f(xn).

Hence we have

n∑
i=1

(−1)i−1pif(xi) + λf(0) ≥ (1− λ)f(xn) + λf(0) ≥ f(0).

Thus there exists a unique B ∈ [yn+1, y1] for which

f(B) =
n∑
i=1

(−1)i−1pif(xi) + λf(0) =
n+1∑
i=1

(−1)i−1pif(yi). (6)

Moreover, there exists 1 ≤ k ≤ n for which yk+1 ≤ B ≤ yk. Since f is convex on [0, a], we
have that f ′ is increasing on [0, a]. Note that∫ yi

B

(f ′(x)− f ′(B)) dx

is non-negative and decreases as i increases from 1 to k. Hence we have

k∑
i=1

(−1)i−1pi

∫ yi

B

(f ′(x)− f ′(B)) dx ≥ 0. (7)

Similarly, we see that

hi :=

∫ B

yn+1−i

(f ′(B)− f ′(x)) dx

is non-negative and decreases as i increases from 0 to n− k. Note that

n+1∑
i=k+1

(−1)i−1pi

∫ B

yi

(f ′(B)− f ′(x)) dx =
n−k∑
i=0

(−1)n−ipn+1−ihi.
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By partial summation and (4) we see that the right-hand side is

n−k−1∑
i=0

(
i∑

j=0

(−1)n−jpn+1−j

)
(hi − hi+1) +

(
n−k∑
i=0

(−1)n−ipn+1−i

)
hn−k

=
n−k−1∑
i=0

(
1−

n−i∑
j=1

(−1)j−1pj

)
(hi − hi+1) +

(
1−

k∑
i=1

(−1)i−1pi

)
hn−k

= h0 −
n−k−1∑
i=0

(
n−i∑
j=1

(−1)j−1pj

)
(hi − hi+1)−

k∑
i=1

(−1)i−1pihn−k

≥ h0 −
n−k−1∑
i=0

p1(hi − hi+1)− p1hn−k

= 0.

Hence we have
n+1∑
i=k+1

(−1)i−1pi

∫ B

yi

(f ′(B)− f ′(x)) dx ≥ 0. (8)

Adding up (7) and (8) we obtain

k∑
i=1

(−1)i−1pi

∫ yi

B

(f ′(x)− f ′(B)) dx+
n+1∑
i=k+1

(−1)i−1pi

∫ B

yi

(f ′(B)− f ′(x)) dx ≥ 0.

In view of (4)–(6), the left-hand side equals (B−A)f ′(B). Since f ′(B) > 0, we have A ≤ B.
Since f is increasing on [0, a], we conclude that f(A) ≤ f(B). This proves (3). �

Remark 1. Szegö’s inequality follows from Proposition 2 by taking p1 = ... = pn = 1, at least
when the convex function in consideration is differentiable.

Remark 2. If f : [a, b]→ R is convex but not necessarily differentiable, then f is continuous
on the open interval (a, b) and admits left and right derivatives both of which are increasing
on (a, b). Moreover, f is differentiable everywhere on (a, b) except for a subset E ⊆ (a, b)
that is at most countable. Hence the arguments used in the proofs of Propositions 1 and 2
may be adapted to accommodate this general case.

We obtain the following result as a corollary of Proposition 2.

Corollary 3. Let p, q be real numbers with |p| ≥ |q| > 0. Let n ≥ 1 be an odd integer and
let x1, ..., xn be positive real numbers with x1 ≥ ... ≥ xn. Then

sgn(p)

(
n∑
i=1

(−1)i−1xpi

)1/p

≥ sgn(p)

(
n∑
i=1

(−1)i−1xqi

)1/q

,

where

sgn(p) :=

{
1 if p > 0,

−1 if p < 0.
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Proof. Let r := p/q and f(x) := (x+ ε)r for x ≥ 0, where ε > 0. Then

f ′′(x) = r(r − 1)(x+ ε)r−2 ≥ |r|(|r| − 1)(x+ ε)r−2 ≥ 0

for all x ≥ 0. Thus f is convex on (0,+∞). Our corollary follows by applying Proposition
2 to f and xq1, ..., x

q
n and letting ε→ 0. �

Both Jensen’s inequality and Szegö’s inequality follow from a beautiful result of Karamata
[3]. Let f : [a, b] → R be a convex function and let p1, ..., pn be positive real numbers.
Let x1, ..., xn ∈ [a, b] and y1, ..., yn ∈ [a, b] be two sequences of real numbers arranged in
descending order, that is, x1 ≥ ... ≥ xn and y1 ≥ ... ≥ yn, such that

n∑
i=1

pixi =
n∑
i=1

piyi (9)

and
k∑
i=1

pixi ≥
k∑
i=1

piyi (10)

for all 1 ≤ k < n. Karamata’s inequality in its weighted form states that under these
conditions, we have

n∑
i=1

pif(xi) ≥
n∑
i=1

pif(yi).

The classical proofs use partial summation. We give a simple proof of Karamata’s inequal-
ity for differentiable convex functions. We first prove the following variant of Karamata’s
inequality.

Proposition 4. Let f1(x), ..., fn(x) be differentiable convex functions on [a, b] such that
f ′1(x) ≥ ... ≥ f ′n(x) ≥ 0 for all x ∈ [a, b]. Let p1, ..., pn be positive real numbers. Suppose
that x1, ..., xn ∈ [a, b] and y1, ..., yn ∈ [a, b] are two sequences of real numbers arranged in
descending order satisfying (10) for all 1 ≤ k ≤ n. Then

n∑
i=1

pifi(xi) ≥
n∑
i=1

pifi(yi). (11)

Furthermore, if f1, ..., fn are strictly convex on [a, b] with f ′n(x) > 0 for all x ∈ [a, b], then
equality in (11) holds if and only if xi = yi for all 1 ≤ i ≤ n.

Proof. For each 1 ≤ k ≤ n, let

Ak :=
k∑
i=1

pi(xi − yi),

Bk :=
k∑
i=1

pi(fi(xi)− fi(yi)).

Since An ≥ 0 and f ′n(x) ≥ 0 for all x ∈ [a, b], it is sufficient to show

Bn ≥ f ′n(yn)An. (12)

For any convex function f : [a, b]→ R, we have that f ′ is increasing on [a, b] and

f(x)− f(y) ≥ f ′(y)(x− y) (13)
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for all x, y ∈ [a, b]. Thus B1 ≥ f ′1(y1)A1. Since A1 ≥ 0 and f ′1(y1) ≥ f ′1(y2) ≥ f ′2(y2), we have

B2 ≥ B1 + f ′2(y2)p2(x2 − y2) ≥ f ′2(y2)(A1 + p2(x2 − y2)) = f ′2(y2)A2.

The inequality (12) follows by iterating this procedure. The assertion for equality in (11)
follows from the observation that if f is strictly convex on [a, b] with f ′(x) > 0 for all
x ∈ [a, b], then equality in (13) occurs precisely when x = y. �

We obtain the following result as a corollary of Proposition 4 of which Karamata’s in-
equality for differentiable convex functions is a special case.

Proposition 5. Let f1(x), ..., fn(x) be differentiable convex functions on [a, b] such that
f ′1(x) ≥ ... ≥ f ′n(x) for all x ∈ [a, b]. Let p1, ..., pn be positive real numbers. Suppose
that x1, ..., xn ∈ [a, b] and y1, ..., yn ∈ [a, b] are two sequences of real numbers arranged in
descending order satisfying (9) and (10). Then

n∑
i=1

pifi(xi) ≥
n∑
i=1

pifi(yi). (14)

Furthermore, if f1, ..., fn are strictly convex on [a, b], then equality in (14) holds if and only
if xi = yi for all 1 ≤ i ≤ n.

Proof. This follows from Proposition 4 applied to gi(x) := fi(x) +Mx for 1 ≤ i ≤ n, where
M > 0 is any positive real number for which |f ′n(x)| < M holds for all x ∈ [a, b]. �

We now give a few simple applications of the inequalities of Jensen and Karamata which
may be of some interest.

Corollary 6. Let z1, ..., zn ∈ C be complex numbers in the open unit disk D := {z ∈ C : |z| <
1}. Suppose that p1, ..., pn are non-negative real numbers with

∑n
j=1 pj = 1. Then

n∏
j=1

(1 + zj)
pj − 1 ∈ D.

Here (1 + zj)
pj = exp(pj log(1 + zj)) with log taken to be the same branch of the natural

logarithm for all 1 ≤ j ≤ n.

Proof. Since
∑n

j=1 pj = 1, we may suppose that log z takes values of the principle branch.

Let 1 + zj = rje
iθj , where θj ∈ (−π, π]. Since |zj| < 1, we deduce that θj ∈ (−π/2, π/2)

and rj < 2 cos θj. The function f(x) := log cos x is strictly concave on (−π/2, π/2), since
f ′′(x) = − sec2 x < 0. Applying Jensen’s inequality to −f and θ1, ..., θn we obtain

log

(
n∏
j=1

(cos θj)
pj

)
=

n∑
j=1

pjf(θj) ≤ f

(
n∑
j=1

pjθj

)
= log cos

(
n∑
j=1

pjθj

)
,

or equivalently,
n∏
j=1

(cos θj)
pj ≤ cos

(
n∑
j=1

pjθj

)
.

To prove ∣∣∣∣∣
n∏
j=1

(1 + zj)
pj − 1

∣∣∣∣∣ < 1,
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it suffices to show that
n∏
j=1

r
pj
j < 2 cos

(
n∑
j=1

pjθj

)
.

This is clearly the case, since
n∏
j=1

r
pj
j <

n∏
j=1

(2 cos θj)
pj = 2

n∏
j=1

(cos θj)
pj ≤ 2 cos

(
n∑
j=1

pjθj

)
.

This completes the proof. �

Corollary 7 (Hölder’s inequality). Let a1, ..., an and b1, ..., bn be positive real numbers. Sup-
pose that p, q > 1 are positive real numbers such that 1/p+ 1/q = 1. Then

n∑
i=1

aibi ≤

(
n∑
i=1

api

)1/p( n∑
i=1

bqi

)1/q

with equality if and only if ap1/b
q
1 = ... = apn/b

q
n.

Proof. Let p1, ..., pn be positive real numbers with
∑n

i=1 pi = 1. Applying Jensen’s inequality
to f(x) := xq yields (

n∑
i=1

pixi

)q

≤
n∑
i=1

pix
q
i

for any x1, ..., xn > 0 with equality if and only if x1 = ... = xn. Taking xi = a
−p/q
i bi and

pi =
api∑n
j=1 a

p
j

for all 1 ≤ i ≤ n and observing that p/q = p− 1, we obtain(
n∑
i=1

aibi

)q( n∑
i=1

api

)−q
≤

(
n∑
i=1

bqi

)(
n∑
i=1

api

)−1
,

which can be rewritten as
n∑
i=1

aibi ≤

(
n∑
i=1

api

)1/p( n∑
i=1

bqi

)1/q

.

Equality occurs if and only if a
−p/q
1 b1 = ... = a

−p/q
n bn, or equivalently, if and only if ap1/b

q
1 =

... = apn/b
q
n. �

Remark 3. The standard proof of Hölder’s inequality uses Young’s inequality which is an
equivalent formulation of the arithmetic mean-geometric mean inequality for n = 2, whereas
our proof uses the convexity of the power function xq.

Corollary 8. Let I ⊆ R be an interval which is also a semigroup, and let f : I → R be a
convex function. Suppose that X = (xij) ∈ Mm×n(I) is an m × n matrix with the property
that xi1 ≥ ... ≥ xin for every i = 1, ...,m. If σ1, ..., σm are permutations of {1, ..., n}, then

n∑
j=1

f

(
m∑
i=1

xij

)
≥

n∑
j=1

f

(
m∑
i=1

xiσi(j)

)
.
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Proof. For each 1 ≤ j ≤ n, let

aj :=
m∑
i=1

xij,

bj :=
m∑
i=1

xiσi(j).

Then a1 ≥ ... ≥ an. Let τ be a permutation of {1, ..., n} such that bτ(1) ≥ ... ≥ bτ(n). Then

k∑
j=1

aj =
m∑
i=1

k∑
j=1

xij ≥
m∑
i=1

k∑
j=1

xiσi(τ(j)) =
k∑
j=1

bτ(j)

for all 1 ≤ k ≤ n− 1 and
n∑
j=1

aj =
m∑
i=1

n∑
j=1

xij =
m∑
i=1

n∑
j=1

xiσi(τ(j)) =
n∑
j=1

bτ(j).

Our corollary follows now from Karamata’s inequality applied to a1, ..., an, b1, ..., bn. �

Remark 4. Two interesting special cases of Corollary 8 are
n∑
j=1

m∏
i=1

xij ≥
n∑
j=1

m∏
i=1

xiσi(j),

n∏
j=1

m∑
i=1

xij ≤
n∏
j=1

m∑
i=1

xiσi(j),

where xij > 0 for all pairs (i, j).

Corollary 9. Let P (x) ∈ R[x] be a non-constant polynomial with only real zeros such that
P (x) > 0 for all x ∈ [a, b]. Let p1, ..., pn be positive real numbers. Suppose that x1, ..., xn ∈
[a, b] and y1, ..., yn ∈ [a, b] are two sequences of real numbers arranged in descending order
satisfying (9) and (10). Then

n∏
i=1

(P (xi))
pi ≤

n∏
i=1

(P (yi))
pi

with equality if and only if xi = yi for all 1 ≤ i ≤ n.

Proof. Let us write

P (x) = A ·
m∏
i=1

(x− ci),

where m ≥ 1 and c1, ..., cm, A ∈ R with A 6= 0. The function f(x) := logP (x) is well-defined
and strictly concave on [a, b], since

f ′′(x) = −
m∑
i=1

1

(x− ci)2
< 0.

Our corollary follows now from Karamata’s inequality applied to −f . �
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Corollary 10. Let r ≥ s ≥ 0 be non-negative integers. Let I, J ⊆ R be two disjoint
intervals, and let a1, ..., ar ∈ J and b1, ..., bs ∈ J be two sequences of real numbers arranged
in descending order satisfying

k∑
i=1

ai ≥
k∑
i=1

bi

for all 1 ≤ k < s and
s∑
i=1

ai =
s∑
i=1

bi.

Let R(x) be a non-constant rational function with real coefficients having zeros a1, ..., ar and
poles b1, ..., bs such that R(x) > 0 for all x ∈ I. Let p1, ..., pn be positive real numbers, and
suppose that x1, ..., xn ∈ I and y1, ..., yn ∈ I are two sequences of real numbers arranged in
descending order satisfying (9) and (10). Then

n∏
i=1

(R(xi))
pi ≤

n∏
i=1

(R(yi))
pi

with equality if and only if xi = yi for all 1 ≤ i ≤ n.

Proof. We may write

R(x) = A · (x− a1) · · · (x− ar)
(x− b1) · · · (x− bs)

,

where A ∈ R \ {0}. Consider the function f(x) := logR(x) for x ∈ I. Note that

f ′′(x) = −
r∑
i=1

1

(x− ai)2
+

s∑
i=1

1

(x− bi)2
.

For each x ∈ I, let gx(y) := 1/(y − x)2 for y ∈ J . Then gx is strictly convex on J . We have
by Karamata’s inequality that for every x ∈ I,

f ′′(x) = −
r∑
i=1

gx(ai) +
s∑
i=1

gx(bi) ≤ −
s∑
i=1

gx(ai) +
s∑
i=1

gx(bi) ≤ 0.

Since R(x) is non-constant, it follows that either r > s or r = s with ai 6= bi for some
1 ≤ i ≤ r, which implies that the above inequality concerning f ′′(x) is strict for every x ∈ I.
Thus f(x) is strictly concave on I. Our corollary follows now by applying Karamata’s
inequality to −f . �

Remark 5. It is evident that Corollary 9 follows from Corollary 10 by taking r > s = 0.

Corollary 11. Let P (x) ∈ R[x] be a non-constant polynomial with non-negative real coef-
ficients. Let p1, ..., pn be positive real numbers. Suppose that x1, ..., xn and y1, ..., yn are two
sequences of positive real numbers arranged in descending order satisfying

k∏
i=1

xpii ≥
k∏
i=1

ypii (15)

for all 1 ≤ k ≤ n. Then
n∏
i=1

(P (xi))
pi ≥

n∏
i=1

(P (yi))
pi . (16)
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Moreover, if P (x) is not a constant multiple of xm for some m ≥ 1, then equality in (16)
holds if and only if xi = yi for all 1 ≤ i ≤ n.

Proof. Suppose that

P (x) =
m∑
k=0

akx
k,

where a0, ..., am−1 ≥ 0 and am > 0. We claim that for any x > 0 we have

(P ′′(x)y + P ′(x))P (x) ≥ P ′(x)2x

which becomes strict when ak > 0 for some 0 ≤ k ≤ m− 1. To prove this, note that

P ′′(x)x+ P ′(x) =
m∑
k=2

k(k − 1)akx
k−1 +

m∑
k=1

kakx
k−1 =

m∑
k=1

k2akx
k−1.

It follows by Cauchy-Schwarz inequality that

(P ′′(x)x+ P ′(x))P (x) =

(
m∑
k=1

k2akx
k−1

)(
m∑
k=0

akx
k

)

≥

(
m∑
k=1

k2akx
k−1

)(
m∑
k=1

akx
k−1

)
x

≥

(
m∑
k=1

kakx
k−1

)2

x

= P ′(x)2x.

If a0 > 0, then
m∑
k=0

akx
k >

(
m∑
k=1

akx
k−1

)
y;

if ak > 0 for some 1 ≤ k ≤ m− 1, then(
m∑
k=1

k2akx
k−1

)(
m∑
k=1

akx
k−1

)
>

(
m∑
k=1

kakx
k−1

)2

.

In both cases, we must have

(P ′′(x)x+ P ′(x))P (x) > P ′(x)2x.

This proves our claim.
Consider now the function f(x) := logP (ex), where x ∈ R. Since P (x) is non-constant

with non-negative real coefficients, we see that f ′(x) = P ′(ex)ex/P (ex) > 0 for all x ∈ R.
Simple calculations show that

f ′′(x) =
[(P ′′(ex)ex + P ′(ex))P (ex)− P ′(ex)2ex]ex

P (ex)2
≥ 0

for all x ∈ R. Thus f is convex on R. Furthermore, if P (x) is not a constant multiple of
xm, or equivalently, if ak > 0 for some 0 ≤ k ≤ m − 1, then f ′′(x) > 0 for all x ∈ R, which
implies that f is strictly convex on R. Our corollary follows immediately from Proposition
4 applied to f and log x1, ..., log xn, log y1, ..., log yn. �
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Corollary 12. Let p1, ..., pn be positive real numbers and suppose that x1, ..., xn and y1, ..., yn
are two sequences of positive real numbers arranged in descending order satisfying (15) for
all 1 ≤ k ≤ n. Then

n∏
i=1

(log(1 + xi))
pi ≤

n∏
i=1

(log(1 + yi))
pi

with equality if and only if xi = yi for all 1 ≤ i ≤ n.

Proof. Let f(x) := log log(1 + ex), where x ∈ R. Then f is strictly increasing on R with

f ′′(x) =
ex[log(1 + ex)− ex]

[(1 + ex) log(1 + ex)]2
< 0,

where we have used the fact that log(1 +y) ≤ y for any y > −1 with equality precisely when
y = 0. This shows that f is strictly concave on R. We finish the proof of our corollary by
applying Proposition 4 to −f and log x1, ..., log xn, log y1, ..., log yn. �

Corollary 13. Let p1, ..., pn be positive real numbers and suppose that x1, ..., xn and y1, ..., yn
are two sequences of positive real numbers arranged in descending order satisfying (9) and
(10). Then

n∏
i=1

(Γ(xi))
pi ≥

n∏
i=1

(Γ(yi))
pi ,

n∑
i=1

piΓ(xi) ≥
n∑
i=1

piΓ(yi),

with equality if and only if xi = yi for all 1 ≤ i ≤ n, where Γ is the Gamma function defined
for every x > 0 by

Γ(x) :=

∫ ∞
0

tx−1e−t dt.

Proof. This follows directly from Karamata’s inequality and the well-known fact that both
Γ(x) and log Γ(x) are strictly convex on (0,+∞). �

Remark 6. It is well known that for any x ∈ (0, 1) we have

Γ(x)Γ(1− x) =
π

sinπx
. (17)

This implies that the function f(x) := Γ(x)Γ(1 − x) is strictly decreasing on (0, 1/2] and
strictly increasing on [1/2, 1). Another way to see this is to use Corollary 13. Indeed, note
that f(x) is symmetric about the line x = 1/2. It thus suffices to consider the interval
(1/2, 1]. If 1/2 ≤ y < x ≤ 1, then Corollary 13 applied with (x1, x2) = (x, 1 − x) and
(y1, y2) = (y, 1− y) gives f(x) > f(y).

Corollary 13 can also be used to produce numerical bounds for special values of Γ. For
instance, we obtain by taking (x1, x2) = (n + 1, n + 1/3), (y1, y2) = (n + 2/3, n + 1/2) and
(p1, p2) = (1, 2) with n ≥ 1 that

n! · Γ
(
n+

1

3

)2

> Γ

(
n+

2

3

)
Γ

(
n+

1

2

)2

.
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Note that

Γ(n+ α) = Γ(α)
n∏
k=1

(k − 1 + α)

for any α ∈ (0, 1). Thus we have

Γ

(
1

3

)2

> Γ

(
2

3

)
π ·

n∏
k=1

(
1− 1

3k

)(
1 +

1

6k − 4

)2

.

Since

Γ

(
2

3

)
=

π

sin(2π/3)
Γ

(
1

3

)−1
=

2π√
3

Γ

(
1

3

)−1
by (17), we obtain by letting n→∞ that

Γ

(
1

3

)
≥ 3

√
2π2A√

3
,

where

A :=
∞∏
k=1

(
1− 1

3k

)(
1 +

1

6k − 4

)2

.

Similarly, we get by taking (x1, x2) = (n + 3/2, n + 1), (y1, y2) = (n + 4/3, n + 4/3) and
(p1, p2) = (2, 1) that

n! · Γ
(
n+

3

2

)2

> Γ

(
n+

4

3

)3

,

which is equivalent to

Γ

(
1

3

)3

< 3π

(
1 +

1

6n+ 2

)2 n∏
k=1

(
1− 1

3k + 1

)(
1 +

1

6k − 4

)2

.

Letting n→∞ we deduce that

Γ

(
1

3

)
≤ 3
√

3πB,

where

B :=
∞∏
k=1

(
1− 1

3k + 1

)(
1 +

1

6k − 4

)2

.

Numerical data shows that

3

√
2π2A√

3
= 2.678938534707747633655692940974677644128689377957301100950428327566...,

3
√

3πB = 2.678938534707747633655692940974677644128689377957301100950428327584....

We see that the bounds we have obtained are fairly good, especially considering that in
deriving these bounds we made no use of the deep properties of Γ other than Corollary 13
and the reflection formula (17).
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Corollary 14. Let p1, ..., pn positive real numbers. Suppose that a1, ..., an and b1, ..., bn are
two sequences of positive real numbers arranged in descending order satisfying (9) and (10).
Let c1, ..., cn and d1, ..., dn be another two sequences of positive real numbers satisfying the
same conditions. Then

n∑
i=1

piB(ai, ci) ≥
n∑
i=1

piB(bi, di)

with equality if and only if (ai, ci) = (bi, di) for all 1 ≤ i ≤ n, where B(x, y) is the Beta
function defined for every pair (x, y) ∈ (0,+∞)2 by

B(x, y) :=

∫ 1

0

tx−1(1− t)y−1 dt.

Proof. Let fi(x) := B(x, ci) for every 1 ≤ i ≤ n. Then

f ′i(x) =

∫ 1

0

tx−1(1− t)ci−1 log t dt < 0,

f ′′i (x) =

∫ 1

0

tx−1(1− t)ci−1(log t)2 dt > 0.

It follows that each fi(x) is strictly convex on (0,+∞) and f ′1(x) ≥ ... ≥ f ′n(x) holds for all
x > 0. Thus Proposition 5 applies; we obtain

n∑
i=1

piB(ai, ci) ≥
n∑
i=1

piB(bi, ci)

with equality if and only if ai = bi for all 1 ≤ i ≤ n. Similarly, we have
n∑
i=1

piB(ci, bi) ≥
n∑
i=1

piB(di, bi)

with equality if and only if ci = di for all 1 ≤ i ≤ n. Combining these two inequalities and
using the identity B(x, y) = B(y, x) we obtain

n∑
i=1

piB(ai, ci) ≥
n∑
i=1

piB(bi, di)

with equality if and only if (ai, ci) = (bi, di) for all 1 ≤ i ≤ n. �

References

[1] H. Alzera, A proof of the arithmetic mean-geometric mean inequality, Am. Math. Mon. 103 (1996),
585.
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